Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1.

نویسندگان

  • W M Toone
  • S Kuge
  • M Samuels
  • B A Morgan
  • T Toda
  • N Jones
چکیده

The fission yeast Sty1 stress-activated MAP kinase is crucial for the cellular response to a variety of stress conditions. Accordingly, sty1- cells are defective in their response to nutrient limitation, lose viability in stationary phase, and are hypersensitive to osmotic stress, oxidative stress, and UV treatment. Some of these phenotypes are caused by Sty1-dependent regulation of the Atf1 transcription factor, which controls both meiosis-specific and osmotic stress-responsive genes. However, in this report we demonstrate that the cellular response to oxidative stress and to treatment with a variety of cytotoxic agents is the result of Sty1 regulation of the Pap1 transcription factor, a bZip protein with structural and DNA binding similarities to the mammalian c-Jun protein. We show that both Sty1 and Pap1 are required for the expression of a number of genes involved in the oxidative stress response and for the expression of two genes, hba2+/bfr1+ and pmd1+, which encode energy-dependent transport proteins involved in multidrug resistance. Furthermore, we demonstrate that Pap1 is regulated by stress-dependent changes in subcellular localization. On imposition of oxidative stress, the Pap1 protein relocalizes from the cytoplasm to the nucleus in a process that is dependent on the Sty1 kinase. This relocalization is the result of regulated protein export, rather than import, and involves the Crm1 (exportin) nuclear export factor and the dcd1+/pim1+ gene that encodes an Ran nucleotide exchange factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway.

The fission yeast Sty1/Spc1 mitogen-activated protein (MAP) kinase is a member of the eukaryotic stress-activated MAP kinase (SAPK) family. We have identified a protein, Sin1, that interacts with Sty1/Spc1 which is a member of a new evolutionarily conserved gene family. Cells lacking Sin1 display many, but not all, of the phenotypes of cells lacking the Sty1/Spc1 MAP kinase including sterility,...

متن کامل

Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase.

In response to oxidative stress, eukaryotic cells induce transcription of genes required for detoxification of oxidants. Here we present evidence that oxidative stress stimuli are transmitted by a multistep phosphorelay system to the Spc1/Sty1 stress-activated protein kinase in the fission yeast Schizosaccharomyces pombe. The fission yeast mpr1(+) gene encodes a novel protein with a histidine-c...

متن کامل

Stress-activated protein kinase pathway functions to support protein synthesis and translational adaptation in response to environmental stress in fission yeast.

The stress-activated protein kinase (SAPK) pathway plays a central role in coordinating gene expression in response to diverse environmental stress stimuli. We examined the role of this pathway in the translational response to stress in Schizosaccharomyces pombe. Exposing wild-type cells to osmotic stress (KCl) resulted in a rapid but transient reduction in protein synthesis. Protein synthesis ...

متن کامل

Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe.

The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H(2)O(2) in the fission ye...

متن کامل

Evidence for a novel MAPKKK-independent pathway controlling the stress activated Sty1/Spc1 MAP kinase in fission yeast.

The fission yeast Sty1/Spc1 MAP kinase, like the mammalian JNK/SAPK and p38/CSBP1 kinases, is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, heat shock, UV light and the protein synthesis inhibitor anisomycin. Sty1 is activated by a single MAPKK, Wis1. We demonstrate that the conserved MAPKKK phosphorylation sites Ser 469 and Thr 473 in the catalytic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 1998